Stochastic Covering and Adaptivity
نویسندگان
چکیده
We introduce a class of “stochastic covering” problems where the target set X to be covered is fixed, while the “items” used in the covering are characterized by probability distributions over subsets of X. This is a natural counterpart to the stochastic packing problems introduced in [5]. In analogy to [5], we study both adaptive and non-adaptive strategies to find a feasible solution, and in particular the adaptivity gap, introduced in [4]. It turns out that in contrast to deterministic covering problems, it makes a substantial difference whether items can be used repeatedly or not. In the model of Stochastic Covering with item multiplicity, we show that the worst case adaptivity gap is Θ(log d), where d is the size of the target set to be covered, and this is also the best approximation factor we can achieve algorithmically. In the model without item multiplicity, we show that the adaptivity gap for Stochastic Set Cover can be Ω(d). On the other hand, we show that the adaptivity gap is bounded by O(d), by exhibiting an O(d)-approximation non-adaptive algorithm.
منابع مشابه
Considering Stochastic and Combinatorial Optimization
Here, issues connected with characteristic stochastic practices are considered. In the first part, the plausibility of covering the arrangements of an improvement issue on subjective subgraphs is studied. The impulse for this strategy is a state where an advancement issue must be settled as often as possible for discretionary illustrations. Then, a preprocessing stage is considered that would q...
متن کاملA Selective Covering-Inventory- Routing problem to the location of bloodmobile to supply stochastic demand of blood
Supplying of blood and blood products is one of the most challenging issues in the healthcare system since blood is as extremely perishable and vital good and donation of blood is a voluntary work. In this paper, we propose a two-stage stochastic selective-covering-inventory-routing (SCIR) model to supply whole blood under uncertainty. Here, set of discrete scenarios are used to display uncerta...
متن کاملEfficient Solution Procedure to Develop Maximal Covering Location Problem Under Uncertainty (Using GA and Simulation)
In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical mod...
متن کاملAn exact Method for Stochastic Maximal Covering Problem of Preventive Healthcare Facilities
Effective preventive healthcare services have a significant role in reducing fatality and medical expenses in all human societies and the level of accessibility of customers to these services can be considered as a measure of their efficiency and effectiveness. The main purpose of this paper is to develop a service network design model of preventive healthcare facilities with the principal obje...
متن کاملOn the Adaptivity Gap of Stochastic Orienteering
The input to the stochastic orienteering problem [13] consists of a budget B and metric (V, d) where each vertex v ∈ V has a job with a deterministic reward and a random processing time (drawn from a known distribution). The processing times are independent across vertices. The goal is to obtain a nonanticipatory policy (originating from a given root vertex) to run jobs at different vertices, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006